<<AUTOR>>
Prashant Deva
<</AUTOR>> 

<<RAMKA>>
The author is the creator of ANTLR Studio and the founder of Placid Systems.
Contact author at: pdeva@placidsystems.com
<</RAMKA>> 

<<TYTUL>>
Using ANTLR Studio to develop ANTLR grammars
<</TYTUL>> 

ANTLR is a tool for generating parsers, lexers and tree parsers. Of course you can write these on your own in your favorite programming language but that would take an extremely long time and not to mention the number of mistakes you will make coupled with the fact that it would be extremely hard to understand the grammar of your parser/lexer. Thus it is far more convenient to write a grammar for the language you want to parse and let a parser generator tool generate the relevant code for you. There are also other tools like lex, yacc, etc which can generate parsers/lexers for you, but ANTLR stands out in that it generates code which is extremely easy to read and has an advanced IDE in ANTLR Studio which makes writing grammars extremely easy.
Writing ANTLR grammars is generally considered to be a slow, tedious and difficult process, done only by ‘real’ programmers. And why shouldn’t it be? Look at all the stuff you gotta ‘manually’ do. First of all there used to be no proper ide for this kind of stuff, so you bring out your trusty old notepad, if you are using windows or emacs, if you are using linux and type away your grammar. Of course there is no syntax highlighting, auto complete, content outline or any of the frills present in your regular java/c++ ides. Add to this the fact that you have to manually build the grammar file each time you make a mistake and there is absolutely no proper way to debug the grammar and you might as well code the parser/lexer in your favorite programming language (e.g., java/c/c++), after all you get all the benefits of your ide, even though you may have have to write a few thousand extra lines of code! 

But all this is about to change with ANTLR Studio, an IDE for ANTLR which completely integrate with the Eclipse development environment. ANTLR Studio was built with the problem of grammar development being disconnected from the main development environment in mind, so it goes to great lengths to provide a highly integrated experience. And to prove this we are going to build a simple app using ANTLR in ANTLR Studio. 

The Calculator
 

<<RYSUNEK>>
<<graphic file_name=calc.PNG/>>
Figure 1. Windows Calculator, although its interface 
looks simple at first, it can get your way when you are 
actually working with it
<</RYSUNEK>> 

The windows calculator although looks very friendly at a first glance, has many things wrong about it. Firstly, if you find a mathematical expression written somewhere, you can’t just copy/paste it into the calculator. You need to type out the entire expression by hand. Also if it is a long expression, sometimes you might just forget which part you are on, cause the calculator doesn’t show you the whole expression, it just shows you the latest result of the expression you have typed until now. So if you by mistake entered a wrong digit while typing out that long expression, you can never find out and your result will be wrong without you even knowing about it.
So we are going to create a new calculator in Eclipse using ANTLR Studio, as shown in Fig 2. You can just type in or copy/paste an entire mathematical expression in the text box and press the calculate button to see the answer. This calculator doesn’t have any of the problems mentioned above. To keep things simple for this tutorial, we will just allow the multiply and add operators inside expressions. 

<<RYSUNEK>>
<<graphic file_name=mycalc.PNG/>>
Figure 2. Our calculator, simple interface which allows you
to see the whole expression at once
<</RYSUNEK>> 

When the calculate button is clicked, the calculator parses the expression in the text box and makes a tree out of it. It then walks the tree to evaluate the expression. The java portion of this app is trivial and irrelevant to our tutorial, so we will just focus on the ANTLR grammar, which contains the meat of the code.
The Parser
<<RYSUNEK>>
<<graphic file_name=header.PNG/>>
Figure 3. ANTLR Studio automatically puts the name of the package when you create a new grammar file
<</RYSUNEK>> 

In the Package Explorer, right-click on a package where you want to place the grammar and select ‘New->ANTLR Grammar’. Type the name of the grammar file in the box that pops up and press ‘Ok’. A new grammar file is created for you with the header section containing package declaration automatically put it. Type the following parser grammar into the editor. Notice that the TypeOnce feature of the editor automatically shows completions without the need to press [Ctrl+Space] making typing the grammar extremely fast. 
 

<<LISTING lang=ANTLR>> 

Listing 1. The parser 

class CalcParser extends Parser;
options{
      buildAST=true;
}
expr
      : mexpr (PLUS^ mexpr)*
      ; 

mexpr
      : a:atom (STAR^ atom)* 

      ; 

atom: INT
      ;
<</LISTING> 

If you know ANTLR syntax, this should look like a pretty simple grammar to you.The first line declares our parser. It is just like declaring a class in Java. Actually this will be generated into a class with the same name (CalcParser) when ANTLR compiles this grammar.  Next we declare the options for this rule which tells ANTLR to create an Abstract Syntax Tree or AST using the parser. 

The next few lines define an expr rule which contains a mexpr followed optionally by 0 or more + tokens and another mexpr, followed by a semi colon.  The * symbol stands for ‘0 or more’. Similarly, the mexpr rule defines an atom. An atom is just defined to be an INT token, which stands for any integer. We will be defining these tokens later in our lexer. 

In case you are wondering, the funny looking ‘^’ symbol in 2 of the rules is used for tree construction. It tells ANTLR that the token is to be made the root of the tree. So for example, the tree formed for the rule expr will have PLUS at its root, with the mexpr as its children. 
The Lexer
Now instead of typing the lexer ourselves, we will use ANTLR Studio’s super cool Lexer Wizard to make it for us. Click on the blue jigsaw puzzle icon on the top right corner of the toolbar. 
<<RYSUNEK>>
<<graphic file_name=toolbar.PNG/>>
Figure 4. The blue puzzle piece icon invokes the Lexer Wizard
<</RYSUNEK>> 
 

In the first page, type the name of the lexer, let’s call it CalcLexer. Click Next. You will see that ANTLR Studio has already filled the name of the tokens which you used in your parser. You just have to provide what they stand for. For e.g. type ; beside SEMI, + beside PLUS and * beside STAR. Remove the INT token. 
<<RYSUNEK>>
<<graphic file_name=tokens.PNG/>>
Figure 5. ANTLR Studio automatically puts the name of the tokens used in your parser,
so you just have to ‘fill in the blanks’
<</RYSUNEK>> 

We will deal with it in the next page. Click Next. In the Add Identifier page, click Add. Now type INT for the token name. Select ‘One or more’ and select ‘Any Digit’. There, we have defined an identifier to recognize ints. You can even type a number in the box below to test the identifier.
<<RYSUNEK>>
<<graphic file_name=identifier.PNG/>>
Figure 6. No longer do you have to manually type complex rules to define identifiers.
The Lexer Wizard even allows you to test your identifier on the spot!
<</RYSUNEK>> 
 

Click Next and check the ‘Add token to represent WhiteSpace’ checkbox. Type WS for the token name and select ‘Ignore WhiteSpace in my language’. 
<<RYSUNEK>>
<<graphic file_name=whitespace.PNG/>>
Figure 7. The Lexer Wizard makes it handling whitespace in your language as easy as ticking a checkbox!
<</RYSUNEK>> 

Now as we don’t need to handle comments or strings in our language, you can just go ahead and press Next in the following 2 steps.
And our lexer is complete, without typing a single word in the editor! That was easy wasn’t it?
The Tree Parser
Now we will type our tree parser to walk the resulting tree and do the actual calculation on the nodes. Type the following into the editor.
<<LISTING lang=ANTLR>> 

Listing 2. The tree parser 

expr returns [int r]
{
      int a,b;
      r=0;
}
      : #(PLUS a=expr b=expr) {r = a+b;}
      | #(STAR a=expr b=expr) {r = a*b;}
      | i:INT   {r = Integer.parseInt(i.getText());}
      ; 

<</LISTING> 

The tree parser needs just one rule. It returns an integer r containing the result of the calculation. First we define 2 ints a & b.  The rest of the rule defines how to walk the tree and perform the calculations. For example, the first alternative there tells the tree walker that the tree contains the PLUS symbol followed by 2 expressions. We put the result of both the exprs in the variables a and b respectively and put the result in r by adding them. Note that anything inside the {} braces stands for Java code. ANTLR will put anything between those braces exactly as it is inside the methods it generates for each rule.
The Java code
And our grammar is complete! Now we will write the code to call the parser and perform the calculation in the even handler for the Calculate button, as follows –
<<LISTING lang=Java>>
Listing 3. Code for calling the parser 

try {
            
            StringReader reader = new StringReader("2+3;");
            CalcLexer lexer = new CalcLexer(reader); 

            CalcParser parser = new CalcParser(lexer);
            // Parse the input expression
            parser.expr();
            CommonAST t = (CommonAST)parser.getAST();
            // Print the resulting tree out in LISP notation
            System.out.println(t.toStringTree());
            CalcTreeWalker walker = new CalcTreeWalker();
            // Traverse the tree created by the parser
            int r = walker.expr(t);
            return r;
        }
        catch(TokenStreamException e) {
            System.err.println("exception: "+e);
        }
        catch(RecognitionException e) {
            System.err.println("exception: "+e);
        }
}
<</LISTING>> 

So there, now we have a calculator which is much friendlier than a lot of calculators. Try on your own to add support for mathematical operations.
